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Abstract. We study analytically the precessional switching of the magnetization of a thin macrospin.
We analyze its response when subjected to an external field along its in-plane hard axis. We derive the
exact trajectories of the magnetization. The switching versus non switching behavior is delimited by a
bifurcation trajectory, for applied fields equal to half of the effective anisotropy field. A magnetization
going through this bifurcation trajectory passes exactly along the hard axis and exhibits a vanishing
characteristic frequency at that unstable point, which makes the trajectory noise sensitive. Attempting to
approach the related minimal cost in applied field makes the magnetization final state unpredictable. We
add finite damping in the model as a perturbative, energy dissipation factor. For a large applied field, the
system switches several times back and forth. Several trajectories can be gone through before the system
has dissipated enough energy to converge to one attracting equilibrium state. For some moderate fields, the
system switches only once by a relaxation dominated precessional switching. We show that the associated
switching field increases linearly with the damping parameter. The slope scales with the square root of
the effective anisotropy. Our simple concluding expressions are useful to assess the potential application of
precessional switching in magnetic random access memories.

PACS. 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling,
etc.) – 75.60.Jk Magnetization reversal mechanisms – 75.75.+a Magnetic properties of nanostructures

Obtaining reproducible magnetization switching within
the sub-nanosecond regime and the sub-micron range is
currently one of the most challenged tasks in nanomag-
netism [1–6]. An intense research activity is currently in
progress for measuring [5,7–9] the ultrafast dynamics of
nanomagnets and for accounting for it numerically [10]. In
Magnetic Random Access Memories, it is of paramount in-
dustrial interest to design magnetization switching strate-
gies, that succeed to commute the storage elements mag-
netization in a fast, reliable and energy cost-effective way
that can be easily scaled down.

The conventional strategy to switch magnetization is
to apply an external field H antiparallel to the magnetiza-
tion. This strategy is cost effective in quasi-static reversal,
when thermal activation helps to overcome the energy bar-
riers [11] i.e. at times longer than a few nanoseconds. In
the faster regime, an external field applied antiparallel to
M creates no torque on the magnetization, except at the
few places where the magnetization is not strictly along
the easy axis. The first consequence is that the magneti-
zation rotation starts slowly. The resulting reversal time
is typically 2−5 ns [7], and reducing this time is very ex-
pensive in applied field [12]. The second (and worst) con-
sequence is that this strategy is cannot be scaled down
in size. It will be even less effective for smaller elements
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because their magnetization will tend to more uniformity,
which reduces the area undergoing a finite torque, and
consequently the switching speed.

In 1996, the seminal work of He et al. [14] studied
the effect of fast-rising fields onto the magnetization of
macrospins (i.e. magnetic bodies with perfectly uniform
magnetization). They predicted using numerical compu-
tations that fields non antiparallel to the magnetization,
thus triggering precessional motions of the magnetization
vector, could induce fast switching events for fields smaller
than the Stoner-Wohlfarth criterion [14]. This was con-
firmed in more details by several authors [13,15]. The
lowest switching field was predicted to be half of the
anisotropy field (HK). The effect of finite rise-time and fi-
nite damping were studied [6,13] by numerical integration
of the Landau-Lifschitz-Gilbert (LLG) equation [16]. Deep
sub-ns precessional switching events, lasting half a preces-
sion period (typically 200 ps) were experimentally con-
firmed last year [2–4,9]. Detailed experimental studies [4]
indicated that precessional switching can be achieved at
sub-Stoner-Wohlfarth fields on “large” (2 × 5 µm2, i.e.
non macrospin) particles, but with a slightly less favorable
minimal applied field. The reproducibility was questioned
when attempting to reach the promised minimal field cost
HK/2 [4]. The direct-write reliability issue was studied for
larger samples in the cross-wire configuration mimicking
a MRAM architecture in [9].
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In this paper, we report an analytical analysis of the
precessional switching of soft nanomagnets. Some very
enlightening information has already arisen from numeri-
cal integration of LLG equations [6,15]. However, because
of multiple parameters intricacy (damping, field magni-
tude and orientation, anisotropy, saturation magnetiza-
tion), only snapshots in the parameter space have been re-
ported so far, obtained through numerical computations.
The scope of this paper is to provide a fully analytical
analysis of the precessional switching so as to derive the
general behavior versus the full set of parameters. In do-
ing so, we find the criteria for the success of a precessional
switching strategy.

Section 1 is devoted to the magnetization trajectory
when damping is neglected. We show how the magneti-
zation trajectory deforms when the anisotropy is varied
above HK/2. The time evolution of the magnetization is
slowed down by the anisotropy. It is found that the mag-
netization switches if a bifurcation criterion is satisfied,
which depends on the initial magnetization. The bifurca-
tion trajectory passes exactly through the hard axis which
is a stationary and unstable magnetization position. It
makes this trajectory very sensitive to any fluctuation,
and fundamentally unpredictable when attempting to ap-
proach the minimal cost in applied field in realistic condi-
tions.

In Section 2, the effect of damping is analyzed in a
perturbative manner, and criteria are derived for the an-
alytical assessment of the switching ability of a given set
of experimental parameters. A special focus is dedicated
to the relaxation dominated precessional switching, where
the minimal cost in applied field is shown to increase lin-
early with the damping constant, the slope of this de-
pendence scaling with the square root of the anisotropy.
Finally, we make a thorough comparison with results ob-
tained from direct time integration of the equation of mo-
tion.

Magnetization dynamics of a macrospin can be accu-
rately described by the well-known Landau-Lifshitz equa-
tion [16]:

d �M

dt
= γ0

�Heff × �M − α

|| �M ||

[
d �M

dt
× �M

]
(1)

where γ0 = γµ0 and γ/2π = 28 GHz/T is the gyromag-
netic factor [17], and the instantaneous effective field is the
sum of the applied field H, the anisotropy field HK and
the demagnetizing field HD. For a macrospin, the magne-
tization M is uniform and the exchange field is zero. The
relaxation towards equilibrium is described phenomeno-
logically by the damping constant α. Throughout this pa-
per, international SI units are used: H and M are in A/m,
µ0H and µ0M are in tesla, and γ0H and γ0MS are fre-
quencies.

The applied field points strictly along the +(y) direc-
tion (see inset in Fig. 1A). We define h = H/MS > 0
its reduced strength. We define m = M/MS the re-
duced magnetization, and mx, my, mz its projections.
The system has an easy axis along (x), i.e. in the sample

Fig. 1. Exact magnetization trajectory of a non lossy
macrospin film of initial magnetization along (x) when sub-
jected to a transverse field h = 0.01 applied along (y), with
Nz = 1. The uniaxial anisotropy is along (x). The anisotropy
field is varied from hk = 0.01, 0.016, 0.02 (twice the ap-
plied field: bifurcation trajectory), 0.03 and 0.1. The two lat-
ter hk values correspond to anisotropy-dominated trajectories.
(A) Trajectory in the (zy) plane. (B) Trajectory in the (xz)
plane. (C) Vector m trajectory when initial magnetization is
along (x). Inset: Definition of the axes. The ellipse stands for
the anisotropic macrospin.

plane, assumed to arise from both shape and magneto-
crystalline uniaxial anisotropy. The initial magnetization
is assumed at rest exactly along the +(x) axis, except for
equation (10) for which m(t=0) is arbitrary.

The magneto-crystalline anisotropy field is along (x)
and it is HK = hkMSmx.
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The system is an ellipsoid with principal axes
along (x), (y) and (z), and corresponding demagnetizing
factor Nx, Ny and Nz. We are concerned about thin film
macrospin, such that Nx ≤ Ny � Nz ≈ 1. We consider
that hk + (Ny − Nx) > 0, consistent with an easy axis
along (x).

For simplicity we write the equations with only two
parameters that are hk and Nz. The demagnetizing field
is written solely along (z) and is Hdemag = −NzMSmz.
To take into account the in-plane components of the de-
magnetizing field, our equations can be straightforwardly
generalized by systematically replacing Nz by Nz − Ny

and hk by hk + (Ny − Nx). Exact expressions where we
assume h � Nz or hk � Nz are displayed using the sym-
bol “∼=”. Approximate expressions implying other argu-
ments use “≈”.

1 Magnetization trajectory with uniaxial
in-plane anisotropy

The in-plane effective uniaxial anisotropy field is along
the easy axis (x) and is HK = hkMSmx, such that the
anisotropy energy is −1/2 µ0M

2
Shkm2

x. The LLG equation
with such anisotropy becomes:

ṁx = γ0 MS mz(Nz my + h) (2)
ṁy = −γ0 MS(Nz + hk)mz mx (3)
ṁz = −γ0 MS mx(h − hk my). (4)

Substituting these equations together yields the magneti-
zation trajectory. The latter can also be derived using the
conservation of the magnetization norm and of the total
energy at t > 0:

E(t)

µ0M2
S

=
1
2

(
Nzm

2
z − hkm2

x

) − hmy. (5)

Either of these two approaches yields the exact magneti-
zation trajectory:

m2
x = 1 − 2h

Nz + hk
my − Nz

Nz + hk
m2

y (6)

m2
z =

2h

Nz + hk
my − hk

Nz + hk
m2

y. (7)

1.1 Classification of the non damped trajectories

Depending on the relative magnitudes of h and hk, three
possible types of trajectory may occur. They are sketched
in Figure 1. They depend on the position of the initial
energy in the energy landscape. The simplest case (i) hap-
pens when the energy landscape has an absolute minimum
at my = 1.

(i) This is the case of rather high applied fields, i.e.
when h ≥ hk. A typical trajectory is displayed in Figure 1
for h = hk = 0.01. In this range of applied fields, the mz

versus mx magnetization trajectory is a stadium-shaped

trajectory. The maximum of mz is mz
∼= ±√

2h− hk, and
it is reached when mx = 0. The trajectory reaches system-
atically the full reversal, i.e. mx = −1. The mz versus my

component is an open path which looks like a half ellipse.
For such applied fields, the equilibrium magnetization is
along (y), and the trajectory rotates around that sole axis
(Figs. 1B, C).

(ii) When the applied field is such that hk > h > hk/2,
i.e. smaller than the anisotropy field but still at least half
of it, the energy landscape has a saddle point at my =
1, and the initial energy is above it. The mz versus mx

trajectory takes a bone shape (Fig. 1B). It bends back
to the easy plane when approaching the direction of the
applied field. The trajectory reaches systematically the
full reversal (mx = −1). For such applied fields, there
is two degenerate equilibrium magnetization states, that
have my = h/hk and mx > 0 or mx < 0. Qualitatively, the
trajectory rotates alternatively around each of them. For
instance the maximum of mz is obtained when my = h/hk

and takes the value:

mmax
z = h

1√
hk(Nz + hk)

∼= h/
√

Nzhk (8)

mz has a local minimum when mx = 0. At this point:

mm
y =

√
N2

z + Nzhk + h2−h and mz
∼=

√
2h− hk. (9)

The mz versus my is an open path which looks like a
truncated ellipse (Fig. 1A).

The trajectories for applied fields h > hk/2 will be re-
ferred hereafter as field-dominated trajectories, in contrast
to the anisotropy-dominated trajectories of the following
paragraph.

(iii) The situation is topologically different when the
field is too low to allow switching, i.e. when it is less than
half of the anisotropy field (h < hk/2). In that case the
initial energy is below that of the saddle point, such that
the magnetization vector can never pass in the mx < 0
half space. Magnetization precesses about the sole nearest
equilibrium magnetization position my = +h/hk. my os-
cillates between 0 and 2h/hk. mx oscillates between 1 and∼= 1 − 4h2/h2

k and the mz versus mx trajectory is ovoid-
like with a maximum radius of curvature is at mx = 1.
The mz versus my has an ellipsoidal shape (Fig. 1A).

An important situation in real devices is that of an
initial magnetization not at rest along (x), for instance
because the magnetization is still ringing as a result of a
previous switching. Let us suppose now that the new ini-
tial magnetization is not along (x) as in Section 1.1 but is
(mx0 < 1, my0 and mz0). The corresponding trajectories
are simply obtained by replacing the variables {m2

x − 1,
my, m2

y, m2
z} by the variables {m2

x − m2
x0, my − my0,

m2
y − m2

y0, m2
z − m2

z0} in equations (6, 7). The criterion
separating anisotropy dominated and field dominated tra-
jectories is then:

hbif = (1 + my0)
hk

2
+

m2
z0

1 − my0

Nz + hk

2
. (10)

Let us discuss the case mz0 = 0. The trajectories with ini-
tial magnetization not along the easy axis differ from the
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Fig. 2. Magnetization trajectories of a thin film with uniaxial
anisotropy hk = 0.016 along (x) when a transverse field is apply
along (y) with magnitude h = 0.01. The initial magnetization
my0 is varied between −0.2 and 0.5. The equilibrium position
at infinite time would correspond to my0 = 0.625. Only one
quadrant of the trajectory is displayed.

above described behavior only when hk > h/(1 + my0) >
hk/2 (see Fig. 2).

If my0 is negative, the switching is eased and is achiev-
able at a reduced applied field. Qualitatively, it is because
the systems feels a Zeeman torque creating the demag-
netizing field during a longer time interval than when
my0 = 0.

If my0 is positive, the Zeeman torque is reduced, which
may hinder the switching. The maximum reduction is at-
tained when my0 = h/hk, i.e. when initial magnetization
is at the in-field equilibrium position. In that case, setting
the field has strictly no effect onto the magnetization (see
Fig. 2, in the limit of my0 = 0.625).

1.2 Bifurcation, stationary and unstable point

The situation of equation (10) (basically: h = hbif =
hk/2) deserves a particular comment because it is a bi-
furcation trajectory. If the applied field is slightly higher,
the system energy of above that of the hard axis and the
trajectory is field dominated, i.e. very extended and mx

reaches both +1 and −1. If the applied field is slightly
lower, the initial energy is below that of hard axis magne-
tization and the trajectory is anisotropy dominated and
stays in the mx > 0 half space.

It sets the minimal field required for a precessional
switching event . This important result was already ob-
tained [10,15] by numerical integration of the LLG equa-
tion. Here we obtained it analytically.

This corresponds to a total adiabatic transfer of the
initial anisotropy energy in the Zeeman energy. Neither
demagnetizing field, nor anisotropy field are present at
this bifurcation point. Since the applied field is parallel
to M, the torque is zero. Note that even if the demagne-
tizing tensor incorporates non vanishing Nx and Ny, this

Fig. 3. Characteristic timescales of a precessional switching
event. (A) Numerical integration of the mx component for
Nz = 1, hk = 0.0148, µ0MS = 1.08 T, h = 1.0005hk/2 and
α = 0. The initial delay τ1, the maximum speed time τ3 and
the slow-down time τ2 are qualitatively superimposed on the
time evolution. (B) Dependence of those three times for applied
fields between hk/2 and hk = 0.01, for Nz = 1.

result still holds. As predicted by Acremann et al. [15],
this bifurcation point is thus also a stationary point where
ṁx,y,z = 0. In the absence of damping, a system fulfill-
ing equation (10) will go ballistically (without ringing) to
that point and stay there forever. Numerical integration
of the LLG equation (Fig. 3A) for anisotropy conditions
very near the bifurcation criterion confirms a drastic slow
down of the trajectory when approaching mx = 0.

Note that the required field Hbif = HK/2 is half of
the anisotropy field, i.e. only half of the field needed to
align the magnetization along the hard axis in a quasi-
static evolution. Hence, this point is stationary but unsta-
ble: in case of a small perturbation, the resulting torque
repels the magnetization away from this point... In real
systems, the thermal agitation or any source of magnetic
noise or dispersion will kick magnetization away from this
bifurcation-stationary point, and the final state will evolve
randomly to either mx > 0 or mx < 0. This is the reason
why poor switching reproducibility is obtained when one
experimentally attempts to reach the promised minimal
field cost HK/2 as in reference [4].

1.3 Characteristic switching frequency

Since the bifurcation trajectory has a singularity in fre-
quency (ω → 0), there is no constant typical frequency
near h ≈ hbif . In this section, we search for the scal-
ing laws of the switching frequency, more specifically in
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the case hk/2 < h < hk. To this aim we introduce three
qualitative times that govern the order of magnitude of
the switching frequency. The reader should consider these
times as conceptual guides that will be useful in Sec-
tion 2.2 for the calculation of the final magnetic state
with finite damping. We define the “initial delay” τ1 dur-
ing which mx does not react much, the “slow-down time”
τ2 during which the system stays near the hard axis, and
“maximum speed time” τ3 the typical time during which
there exists a large demagnetizing field. Their definition
is illustrated in Figure 3A, which displays mx(t) as com-
puted from an exact numerical integration of the LLG
equation.

First, it takes a time delay τ1 for the system to set
its maximum demagnetizing field. Indeed, the initial rate
of change of mx and my is zero (see Eqs. (2, 3)), which
can be seen as an effective delay in the response of the
in-plane projection of the magnetization to the applied
field. In experiments sensitive to only mx and mz, this
time delay during which the sole mz changes significantly
is never accounted for [4]. We define this initial delay τ1

such that: τ1 ṁz|t=0 = mmax
z . Using equation (8), we get:

τ1
∼= 1

γ0MS

1√
hk(hk + Nz)

with hk > h > hk/2. (11)

Or τ1
∼=

√
2h−hk

γ0MSh if h > hk.
As shown in Figure 3B, the initial delay during which

the in-plane projection of the magnetization does not react
much is typically τ1 = 50 ps for common soft alloys.

On the other hand, the reversal of the mx component
occurs mainly due to the demagnetizing field and is thus
dominated by the value of mz when mx ≈ 0. We define
the “slow down time” τ2 as the time it takes for mx to
pass from +0.5 to −0.5 as a result of the demagnetizing
field, so that τ2 is such that τ2 ṁx|mx=0 ≈ 1. Using equa-
tions (4, 9), we get:

τ2
∼= 1

γ0NzMS

1√
2h − hk

with h > hk/2. (12)

Using a similar approach, we can convert the demagne-
tizing field of equation (8) in a frequency, such that we
can write τ3 the typical time spent by the system around
mmax

z . During this “maximum speed time” τ3, there exists
the largest demagnetizing field, driving the magnetization
motion in a fast manner

τ3 =
√

Nzhk

2γ0MSh
. (13)

Note τ1, τ2 and τ3 are only qualitative conceptual
guides: each of them may need to be multiplied by a nu-
merical prefactor of the order of one. Their numerical pref-
actors, especially the one of τ3, will be reconsidered in
Section 2.4, by doing a feed-back comparison with exact
numerical calculations of the minimal switching field when
damping is finite.

From Figure 3B, it is straightforward to see that τ2 >
τ1 > τ3 holds almost always (for 0.51hk < h < hk). This
justifies our naming convention for these times.

In addition, the slow-down time τ2 tends to infinity
near the bifurcation criteria, such that we expect the
characteristic frequency to be limited by τ2 and thus to
scale with γ0

√
MS (H − HK/2). The latter switching fre-

quency ω was calculated numerically. Plots of ω2 versus
−hk or h (not shown) are linear and can be very satisfac-
tory fitted by:

ω ≈ 0.847γ0

√
MS(H − HK/2). (14)

To summarize, the analytical expressions derived in
this section to describe magnetization motion of a non
damped, anisotropic macrospin thin film can account ex-
actly for its magnetization trajectories. Those are either
field dominated and allow switching when h > hk/2, or
either anisotropy dominated with no switching. At mod-
erate switching fields (i.e. h < hk), the magnetization ro-
tates qualitatively in three steps τ2 > τ1 > τ3, which
are respectively the slow-down time τ2, the initial de-
lay τ1, and the maximum speed time τ3. The character-
istic switching frequency tends to zero when H = Hk/2
and scales with the square root of the excess field above
the HK/2.

2 Perturbation treatment of finite damping

We now evaluate the effect of finite damping. Since our
aim is to access the technological potential of precessional
switching, we restrict the analysis to field–dominated tra-
jectories (h > hk/2), i.e. to those trajectories where energy
considerations do not forbid the switching event. Because
we aim at defining cost-effective reversal strategies, we re-
strict to moderate fields (h < hk).

Introducing damping into LLG equation makes it im-
possible to solve analytically. Therefore, we introduce
damping a posteriori as the rate at which the energy in
dissipated.

With finite damping, the final magnetization at t =
+∞ will obey my = h/hk and mz = 0. In between initial
(mx = +1) and final state, the system bifurcates when
the total energy gets smaller than that of the saddle point
of the energy landscape. This arises at the time when an
energy ∆Ebif has already been dissipated:

∆Ebif

µ0M2
S

= h − hk/2. (15)

The following paragraph Section 2.1 aims at evaluating
the energy loss per cyclic trajectory ∆Ecycle and then to
deduce the Number of Trajectories NT = ∆Ebif/∆Ecycle

being gone through before the system bifurcates to an
anisotropy-dominated trajectory and gets trapped in one
of the mx > 0 or mx < 0 half spaces.

2.1 Energy loss per unit cycling of the trajectory

From [22] the damping is linked to the decay rate of the
energy, i.e.:

1
µ0M2

S

dE

dt
= −α

(
ṁ2

x + ṁ2
y + ṁ2

z

) 1
γ0MS

. (16)
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When mx is 0 or ±1, the decay rates are found using
equation (4), and respectively equations (2, 6) and (7):

1
µ0M2

S

dE

dt

∣∣∣∣
mx=1

= −αγ0MSh2

and
1

µ0M2
S

dE

dt

∣∣∣∣
mx=0

= −α γ0 MS N2
z (2h − hk). (17)

But most of the dissipation is likely to occur during the
fastest parts of the trajectory, i.e. when the demagnetizing
field is maximum during τ3. At that point, both ṁx and
ṁy are both large, and m2

x
∼= 1 − h2/2h2

k. Using Nz 	 h,
equation (16) leads to:

1
µ0M2

S

dE

dt

∣∣∣∣
mmax

z

∼= −α γ0 MS h2/hk. (18)

We use 4τ1 (Eq. (11)), 2τ2 (Eq. (12)) and 4τ3 (Eq. (8))
for the typical time [23] intervals where the dissipations of
equations (17, 18) occur. Although the numerical factors
will be justified a posteriori in Section 2.4, we mention that
the 4 factor before τ1 corresponds to the initial delay, the
delay when mx approaches −1, the following delay to set
the opposite demagnetizing field, and the final slow down
when mx approaches back to +1. The 2 factor before τ2

corresponds to back and forth reversal. The factor 4 in 4τ3

correspond to the number of occurrences of mmax
z in the

case h < hk. The total energy loss for the first trajectory
is thus:

−∆Ecycle ≈ 4τ1
dE

dt

∣∣∣∣
mx=1

+2τ2
dE

dt

∣∣∣∣
mx=0

+4τ3
dE

dt

∣∣∣∣
mmax

z

(19)
which reduces to:

∆Ei
cycle

µ0M2
S

≈ α

(
4h2

√
hk

+ 2N2
z

√
2h − hk + 2h/

√
Nzhk

)
.

(20)
The second and following ith trajectories have an incur-
sion reduced by a factor mmax,i

x < 1 such that the dissi-
pation energy of the ith trajectory is reduced by a factor(
mmax,i

x

)3.
In equation (20), the third term is by far the dominant

contribution to the damping for near bifurcation trajecto-
ries, the case we are concerned with. The second and the
third terms are comparable only if h approaches hk. The
first term is negligible. Note that the above expression is
valid only for hk/2 < h < hk. The third term would be to
be discarded if the case h > hk was considered.

2.2 Number of trajectories gone through
before bifurcation

The (non integer) number of trajectories NT gone through
before bifurcation occurs is thus:

NT∑
i=1

(
mmax,i

x

)3
=

∆Ebif

∆Ecycle
≈ 1

α
× (h − hk/2)

√
Nzhk

2h

for hk/2 < h < hk. (21)

The physical meaning of the latter equation is transpar-
ent. The number of trajectories gone through before bi-
furcation occurs is the “excess field” (h − hk/2) above
the bifurcation criteria divided by some energy loss rate
2αh

/√
Nzhk occurring when the demagnetizing field is

maximum during τ3, and taking into account that the
total (x) incursion reduces at each new trajectory gone
throughughe difficulty is to estimate the sum in equa-
tion (21). However since for all i ∈ {1..NT } we have√

1 − h2/h2
k ≈ √

3/4 < mmax
x ≤ 1, the number of trajecto-

ries NT is not far from the right hand side of equation (21)
as long as 2h − hk � 1.

It is worth noticing that NT × α is almost a constant
quantity. As expected, the smaller α, the more trajectories
the system goes through before being trapped.

The characteristic time τbif it takes for the system to
bifurcate and round around a single attraction point is the
number of trajectories divided by the slowest characteris-
tic frequency (τ2), plus the delays:

τbif ≈
√

2
4αγ0MS

√
Nzhk

√
2h − hk

h
+ τ1 + τ3. (22)

From equation (22), when very near the bifurcation cri-
terion (i.e. when 2h − hk � h), the trapping process is
immediate after the delays. The slight dissipation suffices
to make the trajectory bifurcate and prevent the switch-
ing. The theoretical minimal switching field h = hk/2 is
thus out of reach as soon as α > 0.

2.3 Relaxation dominated precessional switching

Our first comment concerns the bifurcation singularity.
Since it is the minimal cost in applied field for a switching
event, it could seem interesting to try to switch the mag-
netization using a trajectory as close as possible to the
bifurcation trajectory.

A important fact is that if hk, h > hk/2 and the damp-
ing α are such that the hard axis is passed by once, but
may not be passed by a second time because of damping,
the system falls in the nearest and thus most attractive
half mx space. The reversal is achieved, even if the pulse
is let on longer than τbif .

Such a behavior was already obtained both exper-
imentally [4] and with numerical simulations. Formerly
reported as “relaxation dominated reversal”, the present
authors prefer to quote it as the relaxation dominated pre-
cessional reversal, to recall that its nature is very different
from the Stoner-Wohlfarth aströıd (relaxation dominated)
reversal.

The requirements on h, hk and α are given by equa-
tion (23) and displayed in Figure 4

α =
(

1 − hk

2h

) √
Nzhk. (23)

The previous equation is obtained considering [24] that
the number of turns should be NT = 1/2 for a full switch.
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Fig. 4. Effect of the damping parameter α on the mimimal
switching field for relaxation dominated precessional switching.

With finite damping, the minimal switching field hmin is:

hmin =
hk

2
×

(
1

1 − α/
√

Nzhk

)
∼= hk

2
+

1
2
α

√
hk√
Nz

. (24)

The approximate expression holds in the limit of soft thin
element, i.e. for α � √

Nzhk. Note that the condition in
the above equation is not stringent: practical MRAM cell
exhibit hk typically less than 0.01, such that they can be
considered as rather soft if their damping constant is much
below 0.1, which is always the case in practice.

Another important conclusion is that there is an affine
dependence of the minimal switching field with the damp-
ing parameter. Surprisingly, the proportionality constant
is the half square root of the anisotropy field Hk.

2.4 Discussion

The minimal field required for a relaxation dominated
precessional switching event had been already calculated
in [13] for a few discrete values of α and for Hk = 13 kA/m.
There (exact) numerical integration give an influence of α
on the minimal cost hmin which is compatible with equa-
tion (24).

The slight differences between exact numerical inte-
gration of LLG and our analytical study stem from our
crude estimate of the term

(∑NT
i=1 (mmax,i

x )3
)
/NT used

to obtain equation (22).
For this reason, we calculated numerically the effect

of α on the minimal switching field hmin, to further
ameliorate our estimate of the prefactor of α in equa-
tions (23, 24). As shown in Figure 4, putting an empirical
prefactor of 0.59 instead of 0.5 in equation (24) gives a bet-
ter overall agreement with the (exact) results produced us-
ing direct numerical integration of the LLG equation. The
minimal switching field can be satisfactorily accounted for
by a modified equation (24):

Hmin =
Hk

2
+ 0.59

α
√

HkMS√
Nz

(25)

which summarizes the effect of the damping parameter on
the minimal field required to switch the magnetization in
a precessional way.

3 Conclusion

We have studied both analytically and numerically the
precessional switching of an anisotropic, thin film nanos-
tructure subjected to an in-plane applied field perpendic-
ular to its easy axis. In the absence of damping, the exact
magnetization trajectories could be derived. They were
classified in anisotropy dominated trajectories, for which
the switching is forbidden by energy considerations, and
field dominated trajectories, for which switching is possi-
ble. Above that so-called bifurcation field, equal to half
of the effective anisotropy field (Eq. (10)), the character-
istic switching frequency scales with the square root of
the magnetization times the applied field minus half of
the anisotropy field. In addition, this bifurcation trajec-
tory has a frequency singularity, such that attempting to
approach this limit makes the reversal intrinsically unpre-
dictable because very sensitive to any noise or fluctuation
source.

For larger applied fields, the system may switch sev-
eral times back and forth. Several trajectories can be gone
through before the system has dissipated enough energy
to converge to one attracting equilibrium state. For some
moderate fields, the system switches only once by a relax-
ation dominated precessional switching.

Finite damping allows designing precessional reversal
strategies which succeed if the duration of the applied
field is greater than a threshold. The corresponding mini-
mal cost in applied field increases linearly with the damp-
ing parameter. The slope of this increase scales with the
square root of the anisotropy field (Eq. (25)). We believe
that the simple and analytical charts derived in this paper
may be useful guidelines for the design of magnetic ran-
dom access memories switched by a precessional strategy.

The authors are grateful to Y. Suzuki who wrote the core of
the LLG solving code used throughout this study.
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